The nuclear-cytoplasmic distribution of the Xenopus nuclear factor, xnf7, coincides with its state of phosphorylation during early development

Author:

Miller M.1,Reddy B.A.1,Kloc M.1,Li X.X.1,Dreyer C.1,Etkin L.D.1

Affiliation:

1. Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston 77030.

Abstract

We describe the characterization in Xenopus laevis of a nuclear protein, xnf7, which is first detected in the oocyte GV and is eventually enriched in nuclei of cells of the adult brain. Previous studies have shown that this protein contains zinc-finger-like structures and acidic domains typical of transcriptional activators, and is phosphorylated in vitro by p34cdc2 protein kinase. The protein also binds to double-stranded DNA. These data suggest that xnf7 may function as a transcription factor. During oocyte maturation, xnf7 is released into the cytoplasm and is not detectable in nuclei until the mid-blastula-gastrula stage of development. Western blot analysis of xnf7 isolated from oocytes and eggs showed the existence of multiple bands or isoforms of the protein. Unique isoforms that are generated during oocyte maturation are the result of phosphorylation. The phosphorylated isoforms remain in the cytoplasm until the mid-blastula stage. The re-accumulation of protein in the embryonic nuclei at this time correlates with the increase in abundance of the less phosphorylated isoforms. The xnf7 protein possesses a nuclear localization signal (NLS) similar to the bipartite signal found in nucleoplasmin. Newly synthesized xnf7 accumulated in the oocyte GV to detectable levels within a few hours following synthesis suggesting that retention of the protein in the cytoplasm during early cleavage may be due to a process that interferes with the function of the NLS. These data suggest that compartmentalization and/or post-translational modification of the nuclear protein xnf7 may be involved in regulating its function during early development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3