Curvature of the caudal region is responsible for failure of neural tube closure in the curly tail (ct) mouse embryo

Author:

Brook F.A.1,Shum A.S.1,Van Straaten H.W.1,Copp A.J.1

Affiliation:

1. Department of Zoology, University of Oxford, UK.

Abstract

Delayed closure of the posterior neuropore (PNP) occurs to a variable extent in homozygous mutant curly tail (ct) mouse embryos, and results in the development of spinal neural tube defects (NTD) in 60% of embryos. Previous studies have suggested that curvature of the body axis may delay neural tube closure in the cranial region of the mouse embryo. In order to investigate the relationship between curvature and delayed PNP closure, we measured the extent of ventral curvature of the neuropore region in ct/ct embryos with normal or delayed PNP closure. The results show significantly greater curvature in ct/ct embryos with delayed PNP closure in vivo than in their normal littermates. Reopening of the posterior neuropore in non-mutant mouse embryos, to delay neuropore closure experimentally, did not increase ventral curvature, suggesting that increased curvature in ct/ct embryos is not likely to be a secondary effect of delayed PNP closure. Experimental prevention of ventral curvature in ct/ct embryos, brought about by implantation of an eyelash tip longitudinally into the hindgut lumen, ameliorated the delay in PNP closure. We propose, therefore, that increased ventral curvature of the neuropore region of ct/ct embryos imposes a mechanical stress, which opposes neurulation and thus delays closure of the PNP. Increased ventral curvature may arise as a result of a cell proliferation imbalance, which we demonstrated previously in affected ct/ct embryos.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3