Structure and innervation of the third axillary muscle of Manduca relative to its role in turning flight

Author:

Rheuben M. B.1,Kammer A. E.1

Affiliation:

1. Department of Anatomy, College of Veterinary Medicine, Michigan State University, East Lansing 48824.

Abstract

The morphology, ultrastructure, innervation and physiology of the third axillary muscle in Manduca sexta were examined to investigate the role of this muscle in flight. The muscle consists of three parts: the upper bundle, which originates on the episternum, and the middle and lower bundles, which originate on the epimeron; all three parts insert on the tip of a projection from the third axillary sclerite. The middle bundle is composed of tonic fibres, and is innervated by a single slow axon, while the other two bundles consist of intermediate fibres and are each innervated by a single fast axon. The shape and position of the third axillary sclerite within the wing hinge are such that its primary function appears to be remotion of the wing. The length of the third axillary muscle determines the amount of remotion, independency of the degree of elevation or depression of the wing and independently of the amount of remotion of the contralateral wing. Electrophysiological recordings from the three parts of the muscle during tethered flight indicate that they may each function independently of each other and in different ways. The tonic (middle) bundle is capable of maintaining tension to hold the wings in the folded position at rest and is active when the wings are folded at the end of flight. The intermediate (upper and lower) bundles are activated phasically with impulses that may occur with various relationships to the timing of activation of a direct depressor, the subalar, or of several of the elevators. The findings are consistent with the hypothesis that the third axillary muscles on both sides are important in determining the asymmetric degrees of remotion observed in turning flight.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3