Swimming in the California sea lion: morphometrics, drag and energetics

Author:

Feldkamp S. D.1

Affiliation:

1. Physiological Research Laboratory, Scripps Institution of Oceanography, La Jolla, CA 92093.

Abstract

During swimming, the California sea lion, Zalophus californianus (Lesson), generates thrust forces solely by means of its pectoral flippers. This study examines the drag, energetic cost and efficiency associated with this method of locomotion. Sea lions are highly streamlined, with a fineness ratio of 5.5 and maximum girth at 40% of body length. This profile leads to reduced drag and swimming power requirements. Films of gliding animals showed the drag coefficient (based on wetted surface area) to be 0.0042 at a Reynolds number of 2.0 X 10(6). This value is comparable to that found for other aquatic vertebrates and suggests that the sea lion's morphology helps to delay turbulent separation and maintain laminar flow over the forward portion of its body. Swimming metabolism was measured in a water flume at velocities up to 1.3 ms-1. Effective swimming speeds up to 2.7 ms-1 were attained by increasing each animal's drag. Oxygen consumption rose exponentially with velocity and for two animals was best described as VO2 = 6.27e0.48U, where VO2 is in mlO2 min-1 kg-1 and U is in ms-1. Minimum cost of transport for these animals was 0.12 ml O2 kg-1 m-1 at a relative speed of 1.4 body lengths s-1. This is 2.5 times that predicted for a fish of similar size. Swimming efficiencies were determined from these results using power output values calculated from the measured drag coefficient and standard hydrodynamic equations. At the highest velocity, aerobic efficiency reached a maximum of 15% while mechanical efficiency of the foreflippers was 80%. The results demonstrate that foreflipper propulsion is a highly efficient and comparatively inexpensive method of locomotion in aquatic mammals.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3