On the coupling between DNA replication and mitosis

Author:

NEWPORT JOHN1,DASSO MARY1

Affiliation:

1. Department of Biology, B-022, University of California at San Diego, La Jolla, California 92093, USA

Abstract

Summary The rapid, early cell divisions in Xenopus laevis embryos are driven by an inflexible oscillator that is not influenced by the state of the DNA. In contrast, mitosis in somatic cells can be prevented by blocking replication or by damaging the DNA through irradiation. We have investigated the transition from the rapid, early cell cycle to the slower, more somatic-like cell cycle that occurs after division twelve in developing Xenopus embryos, a stage called the mid-blastula transition (MBT). When aphidicolin, an inhibitor of DNA synthesis, was added to embryos just post-fertilization, the embryos continued to divide despite incomplete replication. Also, embryos incubated with aphidicolin from early times did not slow their cell cycles after division twelve as control embryos did, indicating a connection between the accumulation of DNA and the post-MBT timing of the cell cycle. However, incubation with hydroxyurea, an inhibitor of ribonucleotide reductase, resulted in an S phase arrest when the pools of dNTPs became depleted after division twelve. These experiments showed that the embryos had acquired the ability to arrest in S phase some time after the early divisions and before division thirteen. The acquisition of the ability to arrest in S phase did not depend upon new transcription. These experiments suggested that the number of nuclei present could be responsible for the extension of the cell cycle observed after the MBT. To investigate this, we added increasing concentrations of nuclei to an in vitro cell cycle system. We have shown that at high concentrations of nuclei the in vitro cycle is extended.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3