Affiliation:
1. School of Life Science and Technology, Tokyo Institute of Technology 1 Department of Life Science and Technology , , Yokohama 226-8501 , Japan
2. Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology 2 , Yokohama 226-8503 , Japan
Abstract
ABSTRACT
DNA double-strand breaks (DSBs) are a serious form of DNA damage that can cause genetic mutation. On the induction of DSBs, histone H2AX becomes phosphorylated by kinases, including ataxia telangiectasia-mutated (ATM), ataxia telangiectasia and Rad3-related (ATR) and DNA-dependent protein kinase (DNA-PK). Phosphorylated H2AX (γ-H2AX) can be a platform to recruit DNA repair machinery. Here, we analyzed the immediate early kinetics of γ-H2AX upon laser-induced DNA damage in ATM-proficient and -deficient living cells by using fluorescently labeled antigen-binding fragments specific for γ-H2AX. The accumulation kinetics of γ-H2AX were similar in both ATM-proficient and -deficient cells. However, γ-H2AX accumulation was delayed when the cells were treated with a DNA-PK inhibitor, suggesting that DNA-PK rapidly phosphorylates H2AX at DSB sites. Ku80 (also known as XRCC5), a DNA-PK subunit, diffuses freely in the nucleus without DNA damage, whereas ATM repeatedly binds to and dissociates from chromatin. The accumulation of ATM at damage sites was regulated by the histone H4K16 acetyltransferase MOF (also known as KAT8 in mammals), but its accumulation was not necessarily reflected in the γ-H2AX level. These results suggest distinct actions of ATM and DNA-PK in immediate γ-H2AX accumulation.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Japan Society for the Promotion of Science
Japan Agency for Medical Research and Development
Publisher
The Company of Biologists
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献