Rotational behaviour of encapsulated pond snail embryos in diverse natural environments

Author:

Shartau Ryan B.1,Harris Stephanie1,Boychuk Evelyn C.1,Goldberg Jeffrey I.1

Affiliation:

1. Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4

Abstract

SUMMARYEncapsulated freshwater pond snail embryos display a cilia-driven rotation behaviour that is stimulated by artificially induced hypoxia. Previous studies have suggested that the mixing effect of this behaviour causes enhanced oxygen delivery to embryos within their egg capsules. Despite extensive laboratory-based studies describing this behaviour, it is unclear how this behaviour is used to cope with changes in oxygen concentration and other environmental factors in natural water bodies. We made field measurements of embryo rotation rates in laboratory-reared Helisoma trivolvis embryos placed in ponds of different trophic levels that ranged geographically from the southern Alberta prairie to the Rocky Mountains. Abiotic factors including temperature, pH, conductivity and water oxygen concentration were measured to understand how embryonic rotation is influenced by environmental conditions. Results showed that H. trivolvis embryos exhibit differences in rotational behaviour depending on the environmental conditions. Temperature and oxygen concentration were the primary factors significantly affecting rotation rates. The effect of oxygen concentration on rotation rates was not as widespread as observed under laboratory conditions, probably because the measured oxygen concentrations were above the range that influences embryonic rotation in the laboratory. The rotational behaviour of laboratory-reared Lymnaea stagnalis provided confirmation that embryos of other encapsulated pulmonates exhibit a similar rotational response in natural environments. These results suggest that embryo rotation is influenced by a complex interplay of environmental factors.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3