Connecting materials, performance and evolution: a case study of the glue of moth-catching spiders (Cyrtarachninae)

Author:

Diaz Candido1ORCID,Baker Richard H.2ORCID,Long John H.1ORCID,Hayashi Cheryl Y.2ORCID

Affiliation:

1. Department of Biology, Vassar College, Poughkeepsie, NY 12604-0731, USA

2. Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA

Abstract

ABSTRACT Morphological structures and extended phenotypes are made possible by materials that are encoded by the genome. Nearly all biomaterials are viscoelastic, which means that to understand performance, one must understand the strain rate-dependent properties of these materials in relevant ecological interactions, as the behavior of a material can vary dramatically and rapidly. Spider silks are an example of materials whose properties vary substantially intra- and inter-specifically. Here, we focus on aggregate silk, which functions as a biological adhesive. As a case study to understand how a material manifests from genome through organism to ecology, we highlight moth-specialist spiders, the Cyrtarachninae, and their glues as an ideal experimental system to investigate the relationship between genomics and ecologically variable performance of a biological material. There is a clear eco-evolutionary innovation that Cyrtarachne akirai and related species have evolved, a unique trait not found in other spiders, a glue which overcomes the scales of moths. By examining traditional orb-weavers, C. akirai and other subfamily members using biomechanical testing and genomic analysis, we argue that we can track the evolution of this novel bioadhesive and comment on the selection pressures influencing prey specialization. The importance of the ecological context of materials testing is exemplified by the poor performance of C. akirai glue on glass and the exceptional spreading ability and adhesive strength on moths. The genetic basis for these performance properties is experimentally tractable because spider silk genes are minimally pleiotropic and advances in genomic technologies now make possible the discovery of complete silk gene sequences.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3