Meta-analytic approaches and effect sizes to account for ‘nuisance heterogeneity’ in comparative physiology

Author:

Noble Daniel W. A.1ORCID,Pottier Patrice2ORCID,Lagisz Malgorzata2ORCID,Burke Samantha2,Drobniak Szymon M.2ORCID,O'Dea Rose E.2ORCID,Nakagawa Shinichi2ORCID

Affiliation:

1. Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia

2. Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

ABSTRACT Meta-analysis is a powerful tool used to generate quantitatively informed answers to pressing global challenges. By distilling data from broad sets of research designs and study systems into standardised effect sizes, meta-analyses provide physiologists with opportunities to estimate overall effect sizes and understand the drivers of effect variability. Despite this ambition, research designs in the field of comparative physiology can appear, at the outset, as being vastly different to each other because of ‘nuisance heterogeneity’ (e.g. different temperatures or treatment dosages used across studies). Methodological differences across studies have led many to believe that meta-analysis is an exercise in comparing ‘apples with oranges’. Here, we dispel this myth by showing how standardised effect sizes can be used in conjunction with multilevel meta-regression models to both account for the factors driving differences across studies and make them more comparable. We assess the prevalence of nuisance heterogeneity in the comparative physiology literature – showing it is common and often not accounted for in analyses. We then formalise effect size measures (e.g. the temperature coefficient, Q10) that provide comparative physiologists with a means to remove nuisance heterogeneity without the need to resort to more complex statistical models that may be harder to interpret. We also describe more general approaches that can be applied to a variety of different contexts to derive new effect sizes and sampling variances, opening up new possibilities for quantitative synthesis. By using effect sizes that account for components of effect heterogeneity, in combination with existing meta-analytic models, comparative physiologists can explore exciting new questions while making results from large-scale data sets more accessible, comparable and widely interpretable.

Funder

Australian Research Council

University of New South Wales

Australian National University

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3