Genes that cause aberrant cell morphology by overexpression in fission yeast: a role of a small GTP-binding protein Rho2 in cell morphogenesis

Author:

Hirata D.1,Nakano K.1,Fukui M.1,Takenaka H.1,Miyakawa T.1,Mabuchi I.1

Affiliation:

1. Department of Molecular Biotechnology, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739, Japan. dhirata@ipc.hiroshima-u.ac.jp

Abstract

To identify the genes involved in cell morphogenesis in Schizosaccharomyces pombe, we screened for the genes that cause aberrant cell morphology by overexpression. The isolated genes were classified on the basis of morphology conferred. One of the genes causing a rounded morphology was identified as the rho2+ gene encoding a small GTP-binding protein. The overexpression of rho2+ resulted in a randomized distribution of cortical F-actin and formation of a thick cell wall. Analyses using cdc mutants suggested that the overexpression of rho2+ prevents the establishment of growth polarity in G1. The rho2+ gene was not essential, but among cells deleted for rho2+, those with an irregular shape were observed. The disruptant also showed a defect in cell wall integrity. An HA-Rho2 expressed in the cell was suggested to be present as a membrane-bound form by a cell fractionation experiment. A GFP-Rho2 was localized at the growing end(s) of the cell and the septation site. The localization of GFP-Rho2 during interphase was partially dependent on sts5+. These results indicate that Rho2 is involved in cell morphogenesis, control of cell wall integrity, control of growth polarity, and maintenance of growth direction. Analysis of functional overlapping between Rho2 and Rho1 revealed that their functions are distinct from each other, with partial overlapping.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3