Microtubules facilitate the stimulated secretion of beta-hexosaminidase in lacrimal acinar cells

Author:

da Costa S.R.1,Yarber F.A.1,Zhang L.1,Sonee M.1,Hamm-Alvarez S.F.1

Affiliation:

1. Department of Pharmaceutical Sciences, University of Southern California, School of Pharmacy, Los Angeles, CA 90033, USA.

Abstract

Stimulation of lacrimal acini with secretagogues such as carbachol initiates movement and fusion of acinar secretory vesicles with the apical plasma membrane, resulting in release of protein into the nascent tear fluid. Using rabbit lacrimal acini reconstituted in vitro from isolated cells, we have investigated the organization of the apical cytoskeleton and its role in stimulated secretion. Confocal microscopy revealed a microtubule array emanating from the apical region of the acini; the apical region was also enriched in microfilaments and (gamma)-tubulin. Cytokeratin-based intermediate filaments were apically concentrated, and also detected at the cell periphery. Neither confocal microscopy nor biochemical analysis revealed any reorganization of lumenal microfilaments or microtubules which might accompany carbachol-stimulated release of secretory proteins. However, major changes in the acinar microtubule array induced by taxol or nocodazole were correlated with inhibition of carbachol-dependent release of the secreted protein, beta-hexosaminidase. Major changes in lumenal microfilaments induced by jasplakinolide or cytochalasin D did not inhibit the carbachol-dependent release of beta-hexosaminidase; rather, release of beta-hexosaminidase from jasplakinolide- or cytochalasin D-treated carbachol-stimulated acini was markedly increased relative to the release from untreated stimulated acini. Our findings demonstrate that microtubules play a major role in stimulated lacrimal secretion, and suggest a contributory role for microfilaments.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3