Cornified cell envelope assembly: a model based on electron microscopic determinations of thickness and projected density

Author:

Jarnik M.1,Simon M.N.1,Steven A.C.1

Affiliation:

1. Laboratory of Structural Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

Abstract

In stratifying squamous epithelia, the cornified cell envelope (CE), a peripheral layer of crosslinked protein, is assembled sequentially from precursor proteins initially dispersed in the cytoplasm. Its major component is loricrin (37 kDa in mouse), which contributes from approx. 60% to >80% of the protein mass in different tissues. Despite its importance to the mechanical resilience and impenetrability of these tissues, detailed information has not been obtained on CE structure, even on such basic properties as its thickness or uniformity across a given CE or from tissue to tissue. To address this issue, we have studied CEs isolated from three murine epithelia, namely epidermis, forestomach and footpad, by electron microscopy of metal-shadowed specimens and scanning transmission electron microscopy (STEM) of unstained specimens. The former data reveal that the cytoplasmic surface is smoothly textured whereas the extracellular surface is corrugated, and that the average thickness is 15.3+/−1.2 nm, and strikingly uniform. Measurements of mass-per-unit-area from the STEM images yielded values of approx. 7.0+/−0.8 kDa/nm2, which were remarkably consistent over all three tissues. These data imply that the mature CE has a uniquely defined thickness. To explain its uniformity, we postulate that loricrin forms a molecular monolayer, not a variable number of multiple layers. In this scenario, the packing density is one loricrin monomer per 7 nm2, and loricrin should have an elongated shape, 2.5-3.0 nm wide by approx. 11 nm long. Moreover, we anticipate that any inter-tissue variations in the mechanical properties of CEs should depend more on protein composition and cross-linking pattern than on the thickness of the protein layer deposited.

Publisher

The Company of Biologists

Subject

Cell Biology

Reference42 articles.

1. A scanning microscope with 5 Å resolution.;Crewe;J. Mol. Biol,1970

2. The involucrin genes of the mouse and the rat: study of their shared repeats.;Djian;Mol. Biol. Evol,1993

3. Lipid and protein structures in the permeability barrier of mammalian epidermis.;Downing;J. Lipid Res,1992

4. Involucrin—structure and role in envelope assembly.;Eckert;J. Invest. Dermatol,1993

5. Molecular characterization of the SPRR familyof keratinocyte differentiation markers encoding small proline-rich proteins.;Gibbs;Genomics,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3