BIMAAPC3, a component of the Aspergillus anaphase promoting complex/cyclosome, is required for a G2 checkpoint blocking entry into mitosis in the absence of NIMA function

Author:

Lies C.M.1,Cheng J.1,James S.W.1,Morris N.R.1,O'Connell M.J.1,Mirabito P.M.1

Affiliation:

1. Molecular and Cellular Biology Section, School of Biological Sciences, University of Kentucky, Lexington, KY 40506-0225, USA.

Abstract

Temperature sensitive (ts) nimA mutants of Aspergillus nidulans arrest at a unique point in G2 which is post activation of CDC2. Here we show that this G2 arrest is due to loss of nimA function and that it is dependent on BIMAAPC3, a component of the anaphase promoting complex/cyclosome (APC/C). Whereas nimA single mutants arrested in G2 with decondensed chromatin and interphase microtubule arrays, nimA, bimAAPC3 double mutants arrested growth with condensed chromatin and aster-like microtubule arrays. nimA, bimAAPC3 double mutants entered mitosis with kinetics similar to bimAAPC3 single mutants and wild-type cells, indicating a checkpoint-like role for BIMAAPC3 in G2. Even cells which had been depleted for NIMA protein and which contained insignificant levels of NIMA kinase activity entered mitosis on inactivation of bimAAPC3. BIMAAPC3 was present in a >25S complex containing BIMEAPC1, and bimAAPC3 mutants were sensitive to elevated CYCLIN B expression, consistent with BIMAAPC3 being a component of the APC/C. Inactivation of bimAAPC3 had little affect on the steady state levels of the B-type cyclin, NIMECyclin B. Our results indicate that BIMAAPC3, and most likely the APC/C itself, is activated in G2 in nimA mutants. We propose that APC/C activation is part of a novel, late G2 checkpoint, which responds to a defective process or structure in nimA mutants, and which prevents inappropriate entry into mitosis.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3