A propagated wave of MPF activation accompanies surface contraction waves at first mitosis in Xenopus

Author:

Perez-Mongiovi D.1,Chang P.1,Houliston E.1

Affiliation:

1. Unite de Biologie Cellulaire Marine, ERS 643 CNRS-Universite Paris VI, Station Zoologique, 06230 Villefranche-sur-mer, France.

Abstract

During the period of mitosis, two surface contraction waves (SCWs) progress from the animal to vegetal poles of the Xenopus egg. It has been shown that these SCWs occur in parallel with the activation of MPF and with its subsequent inactivation in the animal and vegetal hemispheres, suggesting that they are responses to propagated waves of MPF activity across the egg. We have analysed the mechanism of MPF regulation in different regions of the egg in detail in relation to SCW progression. The distributions of histone HI kinase activity and of Cdc2 and cyclin B (the catalytic and regulatory subunits of MPF) were followed by dissection of intact eggs following freezing and in cultured fragments separated by ligation. Cdc2 was found to be distributed evenly throughout the egg cytoplasm. Loss of phosphorylated (inactive) forms of Cdc2 coincided spatially with the wave of MPF activation, while cyclin B2 accumulation occurred in parallel in animal and vegetal regions. In ligated vegetal pole fragments no MPF activation or Cdc2 dephosphorylation were detectable. A wave of cyclin B destruction that occurred in concert with the second SCW was also blocked. Taken together these results indicate that the triggering mechanism for MPF activation requires components specific to the animal cytoplasm, acting via Cdc2 dephosphorylation, and that MPF activation subsequently propagates autocatalytically across the egg. SCW progression in the vegetal hemisphere was followed directly by time-lapse videomicroscopy of subcortical mitochondrial islands. The first SCW traversed the vegetal pole at the time of MPF activation in this region. Like MPF activation and inactivation, SCWs were blocked in the vegetal region by ligation. These observations reinforce the hypothesis that the first SCW is a direct consequence of the MPF activation wave. It may reflect depolymerisation of the subcortical microtubule network since it coincided exactly with the arrest of the microtubule-dependent movement of ‘cortical rotation’ and was related in direction in most eggs. The cyclin B destruction wave and associated cortical contraction of the second SCW may be localised downstream consequences of the MPF activation wave, or they may propagate independently from the animal cytoplasm.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3