Cyclic AMP-dependent protein kinases and human trophoblast cell differentiation in vitro

Author:

Keryer G.1,Alsat E.1,Tasken K.1,Evain-Brion D.1

Affiliation:

1. INSERM Unite 427, Universite Rene Descartes, Faculte des Sciences Pharmaceutiques et Biologiques de Paris, Paris, France.

Abstract

Human trophoblast cells offer a unique in vitro model for the study of aspects of the dynamic processes occurring during cell fusion and syncytium formation. In the human placenta, mononuclear cytotrophoblasts aggregate and fuse to form a multinucleated syncytiotrophoblast. In vitro, the addition of cyclic AMP analogs, 8-bromo-cyclic-AMP or Sp-8-bromo-cyclic AMPS, promotes syncytiotrophoblast formation, as shown by the disappearance of immunostained E-cadherin and desmoplakin, and increased numbers of nuclei per syncytium. An antagonist of cyclic AMP, Rp-8-bromo-cyclic AMPS, and an inhibitor of the cyclic AMP-dependent protein kinase catalytic subunit, H-89, impair cell fusion. This led us to study the pattern of expression and subcellular localization of cyclic-AMP-dependent protein kinase subunits during syncytium formation. Cytotrophoblasts expressed the RIalpha and RIIalpha regulatory subunits and the Calpha and Cbeta catalytic subunits. RIalpha was down-regulated during syncytium formation. No change in RIIalpha protein levels was observed, but there was a drastic subcellular redistribution. RIIalpha located in the Golgi-centrosomal area of cytotrophoblasts was scattered throughout the cytoplasm of the syncytiotrophoblast. Interestingly, an accumulation of RIIalpha was observed underneath the apical membrane of syncytiotrophoblast in vitro and in situ. This suggests a key role of cyclic AMP-dependent protein kinase type IIalpha during cell fusion and microvilli formation, both of which are essential for the secretory and transfer functions of the syncytiotrophoblast.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3