Mph1, a member of the Mps1-like family of dual specificity protein kinases, is required for the spindle checkpoint in S. pombe

Author:

He X.1,Jones M.H.1,Winey M.1,Sazer S.1

Affiliation:

1. Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.

Abstract

The spindle assembly checkpoint pathway is not essential for normal mitosis but ensures accurate nuclear division by blocking the metaphase to anaphase transition in response to a defective spindle. Here, we report the isolation of a new spindle checkpoint gene, mph1 (Mps1p-like pombe homolog), in the fission yeast Schizosaccharomyces pombe, that is required for checkpoint activation in response to spindle defects. mph1 functions upstream of mad2, a previously characterized component of the spindle checkpoint. Overexpression of mph1, like overexpression of mad2, mimics activation of the checkpoint and imposes a metaphase arrest. mph1 protein shares sequence similarity with Mps1p, a dual specificity kinase that functions in the spindle checkpoint of the budding yeast Saccharomyces cerevisiae. Complementation analysis demonstrates that mph1 and Mps1p are functionally related. They differ in that Mps1p, but not mph1, has an additional essential role in spindle pole body duplication. We propose that mph1 is the MPS1 equivalent in the spindle checkpoint pathway but not in the SPB duplication pathway. Overexpression of mad2 does not require mph1 to impose a metaphase arrest, which indicates a mechanism of spindle checkpoint activation other than mph1/Mps1p kinase-dependent phosphorylation. In the same screen which led to the isolation of mad2 and mph1, we also isolated dph1, a cDNA that encodes a protein 46% identical to an S. cerevisiae SPB duplication protein, Dsk2p. Our initial characterization indicates that S.p. dph1 and S.c. DSK2 are functionally similar. Together these results suggest that the budding and fission yeasts share common elements for SPB duplication, despite differences in SPB structure and the timing of SPB duplication relative to mitotic entry.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3