Affiliation:
1. Department of Biochemistry and Molecular Biology and The Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, MN 55905, USA.
Abstract
Suprastimulation of pancreatic acinar cells with specific agonists inhibits zymogen secretion and induces the formation of large basolateral blebs. Currently the molecular mechanisms that mediate this dramatic morphologic response are undefined. Further, it is unclear if blebbing represents a terminal or reversible event. Using computer-enhanced video microscopy of living acini we have found that these large blebs form rapidly (within 2–3 minutes) and exhibit ameboid undulations. They are induced by small increases in agonist concentration and require an energy-dependent phosphorylation event. Remarkably, the blebs are rapidly absorbed when agonist levels are reduced, indicating that blebbing is a reversible response to a physiological stimulus, not a terminal event. Morphological methods show that these dramatic changes in cell shape are accompanied by a marked reorganization of actin and myosin II at the basolateral domain. During 30 minutes of suprastimulation, both basolateral actin and myosin II gradually increase to form a ring centered at the necks of the blebs. Immunocytochemical and biochemical studies with a phospho-specific antibody to the myosin regulatory light chain reveal an activation of myosin II in suprastimulated acini that is completely absent in resting cells. Studies using cytoskeletal antagonistic drugs indicate that bleb formation and motility require actin remodeling concomitant with an activation of myosin II. This aberrant activation and reorganization of the actin-myosin cytoskeleton is likely to have detrimental effects on acinar cell function. Additionally, this mechanism of bleb formation may be conserved among other forms of physiological blebbing events.
Publisher
The Company of Biologists
Reference53 articles.
1. Regulation and kinetics of the actin-myosin-ATP interaction.;Adelstein;Ann. Rev. Biochem,1980
2. Secretagogue-induced membrane alterations in dispersed acini from rat pancreas.;Adler;Eur. J. Cell Biol,1984
3. Apoptosis: mechanisms and roles in pathology.;Arends;Int. Rev. Experiment. Path,1991
4. Mitosis in cultures of newt tissue.;Boss;Exp. Cell Res,1955
5. Evaluation of myosin light chain phosphorylation in isolated pancreatic acini.;Burnham;Am. J. Physiol,1988
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献