Antisense oligonucleotides against ‘cardiac’ and ‘skeletal’ DHP-receptors reveal a dual role for the ‘skeletal’ isoform in EC coupling of skeletal muscle cells in primary culture

Author:

Bulteau L.1,Raymond G.1,Cognard C.1

Affiliation:

1. Biomembranes Laboratory, UMR 6558 University of Poitiers/CNRS, F-86022 Poitiers cedex, France. ch.cognard@cri.univ-poitiers.fr

Abstract

Two dihydropyridine receptor mRNA isoforms (cardiac and skeletal) are expressed in rat skeletal muscle cells in primary culture. The progressive changes in excitation-contraction coupling mode from dual mode (‘skeletal’ and ‘cardiac’) to predominant ‘skeletal’ one during in vitro myogenesis are thought to be linked to the developmental changes in the relative expression of the two types of molecular entity previously observed in this preparation. In order to test this hypothesis, myotube cultures (5- to 7-day-old) were treated with antisense phosphorothioated oligodeoxynucleotides against cardiac or skeletal alpha1 subunit of L-type calcium channel. The oligodeoxynucleotide uptake by cells was checked by means of imaging of fluorescent oligodeoxynucleotide derivatives within the cells. Optimum concentration used (10 microM in the extracellular medium) and incubation time (70 hours) were empirically determined. Antisense directed against the cardiac type led to a 54% decrease in the averaged L-type calcium current peak density at −10 mV. The same type of experiment was performed with antisense against the skeletal isoform and led to a same order of inhibition (46%). This result clearly shows that the two isoforms can work as a calcium channel. Conversely, analysis of the shape of T-V (relative contractile amplitude versus membrane potential) curves shows that the treatment with ‘skeletal’ antisense depressed the contractile response in the medium membrane potential range whereas treatment with ‘cardiac’ antisense had no effect. This and other results taken together suggest that the skeletal isoform of dihydropyridine receptor is involved in both ‘cardiac’ and ‘skeletal’ types of EC coupling mechanisms at work in early stages of myotubes in vitro development. The type of coupling probably depends on the proximity of the skeletal dihydropyridine receptor and the ryanodine receptor.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3