Affiliation:
1. Department of Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
Abstract
The temporal and spatial patterns of histone H3 phosphorylation implicate a specific role for this modification in mammalian chromosome condensation. Cells arrest in late G2 when H3 phosphorylation is competitively inhibited by microinjecting excess substrate at mid-S-phase, suggesting a requirement for activity of the kinase that phosphorylates H3 during the initiation of chromosome condensation and entry into mitosis. Basal levels of phosphorylated H3 increase primarily in late-replicating/early-condensing heterochromatin both during G2 and when premature chromosome condensation is induced. The prematurely condensed state induced by okadaic acid treatment during S-phase culminates with H3 phosphorylation throughout the chromatin, but in an absence of mitotic chromosome morphology, indicating that the phosphorylation of H3 is not sufficient for complete condensation. Mild hypotonic treatment of cells arrested in mitosis results in the dephosphorylation of H3 without a cytological loss of chromosome compaction. Hypotonic-treated cells, however, complete mitosis only when H3 is phosphorylated. These observations suggest that H3 phosphorylation is required for cell cycle progression and specifically for the changes in chromatin structure incurred during chromosome condensation.
Publisher
The Company of Biologists
Cited by
150 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献