HiPER1, a phosphatase of the endoplasmic reticulum with a role in chondrocyte maturation

Author:

Romano P.R.1,Wang J.1,O'Keefe R.J.1,Puzas J.E.1,Rosier R.N.1,Reynolds P.R.1

Affiliation:

1. Department of Orthopaedics, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA.

Abstract

We have previously identified and partially cloned Band 17, a gene expressed in growth plate chondrocytes transiting from proliferation to hypertrophy. We now rename this gene HiPER1, Histidine Phosphatase of the Endoplasmic Reticulum-1, based on the results reported here. HiPER1 encodes two proteins of 318 (HiPER1(318)) and 449 (HiPER1(449)) amino acids, which are 20–21% identical to a group of yeast acid phosphatases that are in the histidine phosphatase family. HiPER1(449) is significantly more abundant than HiPER1(318), correlating with the abundance of the alternatively spliced messages encoding HiPER449 and HiPER318. Anti-HiPER1 antibodies detect two proteins of 53 and 55 kDa in growth plate chondrocytes that are absent in articular chondrocytes. We confirm that the 53 and 55 kDa proteins are HiPER1(449) by heterologous expression of the HiPER1(449) coding sequence in chick embryo fibroblasts. The 53 and 55 kDa proteins are glycosylated forms of HiPER1(449), as N-glycosidase F digestion reduces these proteins to 48 kDa, the predicted size of HiPER1(449) without the N-terminal signal sequence. Immunocytochemistry demonstrates that HiPER1(449) is found in chondrocytes maturing from proliferation to hypertrophy, but is not detectable in resting zone, deep hypertrophic zone or articular chondrocytes, a distribution that is consistent with the message distribution. HiPER1(449) was predicted to localize to the lumen of endoplasmic reticulum by an N-terminal signal sequence and by the C-terminal sequence Ala-Asp-Glu-Leu, which closely matches the consensus signal for ER retention, Lys-Asp-Glu-Leu. We confirm this prediction by demonstrating colocalization of HiPER1(449) with the ER protein HSP47 using dual-label immunofluorescence. PTHrP, a peptide that prevents hypertrophy in chondrocytes, suppressed HiPER1 and HiPER1(449) expression in vitro, an observation that further supports a role for HiPER1 in chondrocyte maturation. The yeast phosphatase homology, localization to the endoplasmic reticulum and pattern of expression suggest that HiPER1 represents a previously unrecognized intracellular pathway, involved in differentiation of chondrocytes.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3