Floral vibrations by buzz-pollinating bees achieve higher frequency, velocity and acceleration than flight and defence vibrations

Author:

Pritchard David J.1ORCID,Vallejo-Marín Mario1

Affiliation:

1. Department of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling. FK9 4LA. Stirling, Scotland, UK

Abstract

Vibrations play an important role in insect behaviour. In bees, vibrations are used in a variety of contexts including communication, as a warning signal to deter predators and during pollen foraging. However, little is known about how the biomechanical properties of bee vibrations vary across multiple behaviours within a species. In this study, we compared the properties of vibrations produced by Bombus terrestris audax (Hymenoptera: Apidae) workers in three contexts: during flight, during defensive buzzing, and in floral vibrations produced during pollen foraging on two buzz-pollinated plants (Solanum, Solanaceae). Using laser vibrometry, we were able to obtain contactless measures of both the frequency and amplitude of the thoracic vibrations of bees across the three behaviours. Despite all three types of vibrations being produced by the same power flight muscles, we found clear differences in the mechanical properties of the vibrations produced in different contexts. Both floral and defensive buzzes had higher frequency and amplitude velocity, acceleration, and displacement than the vibrations produced during flight. Floral vibrations had the highest frequency, amplitude velocity and acceleration of all the behaviours studied. Vibration amplitude, and in particular acceleration, of floral vibrations has been suggested as the key property for removing pollen from buzz-pollinated anthers. By increasing frequency and amplitude velocity and acceleration of their vibrations during vibratory pollen collection, foraging bees may be able to maximise pollen removal from flowers, although their foraging decisions are likely to be influenced by the presumably high cost of producing floral vibrations.

Funder

Leverhulme Trust

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3