Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury

Author:

Thangavel Jayakumar1,Samanta Saheli1,Rajasingh Sheeja1,Barani Bahar1,Xuan Yu-Ting1,Dawn Buddhadeb1,Rajasingh Johnson12

Affiliation:

1. Cardiovascular Research Institute, Division of Cardiovascular Diseases, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA

2. Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA

Abstract

Acute lung injury (ALI) during sepsis is characterized by bilateral alveolar infiltrates, lung edema, and respiratory failure. Here, we examined the efficacy of DNA methyl transferase (DNMT) inhibitor Aza (5-Aza 2-deoxycytidine), histone deacetylase (HDAC) inhibitor TSA (Trichostatin A), and combination therapy (Aza+TSA) in protection of ALI. In LPS-induced mouse ALI, post-treatment with a single dose of Aza+TSA showed a substantial attenuation of adverse lung histopathological changes, and inflammations. Importantly, these protective effects were due to significant macrophage phenotypic changes observed in LPS-stimulated macrophages treated with Aza+TSA as compared with untreated LPS-induced macrophages or LPS-stimulated macrophages treated with either drug alone. Further, we observed significantly lower levels of pro-inflammatory molecules and higher levels of anti-inflammatory molecules in LPS-induced macrophages treated with Aza+TSA than in LPS-induced macrophages treated with either drug alone. The protection was ascribed to dual effects by an inhibition of MAPK-HuR-TNF and activation of STAT3-Bcl2 pathways. Combinatorial treatment with Aza+TSA reduces inflammation and promotes an anti-inflammatory M2 macrophage phenotype in ALI. This finding gives further evidence that the epigenetic treatment has a therapeutic potential for patients with sepsis.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3