A computational fluid dynamics of `clap and fling' in the smallest insects

Author:

Miller Laura A.1,Peskin Charles S.2

Affiliation:

1. Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA

2. Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA

Abstract

SUMMARYIn this paper, we have used the immersed boundary method to solve the two-dimensional Navier–Stokes equations for two immersed wings performing an idealized `clap and fling' stroke and a `fling' half-stroke. We calculated lift coefficients as functions of time per wing for a range of Reynolds numbers (Re) between 8 and 128. We also calculated the instantaneous streamlines around each wing throughout the stroke cycle and related the changes in lift to the relative strength and position of the leading and trailing edge vortices.Our results show that lift generation per wing during the `clap and fling'of two wings when compared to the average lift produced by one wing with the same motion falls into two distinct patterns. For Re=64 and higher,lift is initially enhanced during the rotation of two wings when lift coefficients are compared to the case of one wing. Lift coefficients after fling and during the translational part of the stroke oscillate as the leading and trailing edge vortices are alternately shed. In addition, the lift coefficients are not substantially greater in the two-winged case than in the one-winged case. This differs from three-dimensional insect flight where the leading edge vortices remain attached to the wing throughout each half-stroke. For Re=32 and lower, lift coefficients per wing are also enhanced during wing rotation when compared to the case of one wing rotating with the same motion. Remarkably, lift coefficients following two-winged fling during the translational phase are also enhanced when compared to the one-winged case. Indeed, they begin about 70% higher than the one-winged case during pure translation. When averaged over the entire translational part of the stroke, lift coefficients per wing are 35% higher for the two-winged case during a 4.5 chord translation following fling. In addition, lift enhancement increases with decreasing Re. This result suggests that the Weis-Fogh mechanism of lift generation has greater benefit to insects flying at lower Re. Drag coefficients produced during fling are also substantially higher for the two-winged case than the one-winged case, particularly at lower Re.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3