Affiliation:
1. School of Biological Sciences, University of Plymouth, Drake Circus,Plymouth PL4 8AA, UK
Abstract
SUMMARYThe pathway for copper (Cu) uptake across the mucosal membrane into intestinal cells has not been elucidated in fish. Copper accumulation in freshly isolated intestinal cells from rainbow trout Oncorhynchus mykiss was measured after exposure to 0–800 μmol l–1 CuSO4 for 15 min. With external Cu concentration (Cuo) of 800 μmol l–1, the rate of Cu accumulation by cells was 1.88±0.52 nmol Cu mg–1cell protein h–1 compared to 0.05±0.01 nmol Cu mg–1 cell protein h–1 with no added Cuo (means ± s.e.m., N=6). Deduction of a rapid Cu accumulation measured on/in cells at time zero (about 12% of the total Cu uptake when Cuo was 800 μmol l–1)revealed a saturable uptake curve, which reached a plateau at 400 μmol l–1 Cuo (Km=216 μmol l–1 Cuo; Vmax=1.09 nmol Cu mg–1 cell protein h–1; 140 mmol l–1 NaCl throughout). Incubation of cells at 4°C did not prevent Cu accumulation. Lowering external [Na+] to 11 mmol l–1 (low Na+o) generally did not alter the rate of Cu accumulation into the cells over a 15 min period. Under low Na+o conditions Cu accumulation was exponential(non-saturable). Na+-insensitive Cu accumulation dominated (59% of total Cu accumulation) when Cuo was 400 μmol l–1 or less. At high Cuo (800 μmol l–1), removal of Na+ caused a 45% increase in Cu accumulation. Pre-incubation of cells with blocking agents of epithelial Na+ channel (ENaC) for 15 min (normal [NaCl] throughout) caused Cu accumulation rates to increase by 40-fold (100 μmol l–1phenamil), 21-fold (10 μmol l–1 CDPC) or 12-fold (2 mmol l–1 amiloride) when Cuo was 800 μmol l–1 compared to those in drug-free controls. Lowering the external chloride concentration [Cl–]o from 131.6 to 6.6 mmol l–1 (replaced by sodium gluconate) caused the rate of Cu accumulation to increase 11-fold when Cuo was 800μmol l–1. Application of 0.1 mmol l–1DIDS (normal Cl–o) caused a similar effect. Lowering external pH from 7.4 to pH 5.5 produced a 17-fold, saturable,increase in Cu accumulation rate, which was not explained by increased instantaneous Cu accumulation on/in cells at low pH. We conclude that Cu accumulation by intestinal cells is mainly Na+-insensitive and more characteristic of a pH- and K+-sensitive Ctr1-like pathway than Cu uptake through ENaCs.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献