Sodium-sensitive and -insensitive copper accumulation by isolated intestinal cells of rainbow troutOncorhynchus mykiss

Author:

Burke J.1,Handy R. D.1

Affiliation:

1. School of Biological Sciences, University of Plymouth, Drake Circus,Plymouth PL4 8AA, UK

Abstract

SUMMARYThe pathway for copper (Cu) uptake across the mucosal membrane into intestinal cells has not been elucidated in fish. Copper accumulation in freshly isolated intestinal cells from rainbow trout Oncorhynchus mykiss was measured after exposure to 0–800 μmol l–1 CuSO4 for 15 min. With external Cu concentration (Cuo) of 800 μmol l–1, the rate of Cu accumulation by cells was 1.88±0.52 nmol Cu mg–1cell protein h–1 compared to 0.05±0.01 nmol Cu mg–1 cell protein h–1 with no added Cuo (means ± s.e.m., N=6). Deduction of a rapid Cu accumulation measured on/in cells at time zero (about 12% of the total Cu uptake when Cuo was 800 μmol l–1)revealed a saturable uptake curve, which reached a plateau at 400 μmol l–1 Cuo (Km=216 μmol l–1 Cuo; Vmax=1.09 nmol Cu mg–1 cell protein h–1; 140 mmol l–1 NaCl throughout). Incubation of cells at 4°C did not prevent Cu accumulation. Lowering external [Na+] to 11 mmol l–1 (low Na+o) generally did not alter the rate of Cu accumulation into the cells over a 15 min period. Under low Na+o conditions Cu accumulation was exponential(non-saturable). Na+-insensitive Cu accumulation dominated (59% of total Cu accumulation) when Cuo was 400 μmol l–1 or less. At high Cuo (800 μmol l–1), removal of Na+ caused a 45% increase in Cu accumulation. Pre-incubation of cells with blocking agents of epithelial Na+ channel (ENaC) for 15 min (normal [NaCl] throughout) caused Cu accumulation rates to increase by 40-fold (100 μmol l–1phenamil), 21-fold (10 μmol l–1 CDPC) or 12-fold (2 mmol l–1 amiloride) when Cuo was 800 μmol l–1 compared to those in drug-free controls. Lowering the external chloride concentration [Cl–]o from 131.6 to 6.6 mmol l–1 (replaced by sodium gluconate) caused the rate of Cu accumulation to increase 11-fold when Cuo was 800μmol l–1. Application of 0.1 mmol l–1DIDS (normal Cl–o) caused a similar effect. Lowering external pH from 7.4 to pH 5.5 produced a 17-fold, saturable,increase in Cu accumulation rate, which was not explained by increased instantaneous Cu accumulation on/in cells at low pH. We conclude that Cu accumulation by intestinal cells is mainly Na+-insensitive and more characteristic of a pH- and K+-sensitive Ctr1-like pathway than Cu uptake through ENaCs.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3