Identification of spatial and temporal cues that regulate postembryonic expression of axon maintenance factors in theC. elegansventral nerve cord

Author:

Aurelio Oscar1,Boulin Thomas1,Hobert Oliver1

Affiliation:

1. Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA

Abstract

Patterns of gene expression are under precise spatial and temporal control. A particularly striking example is represented by several members of thezig gene family, which code for secreted immunoglobulin domain proteins required for maintaining ventral nerve cord organization inCaenorhabditis elegans. These genes are coordinately expressed in a single interneuron in the ventral nerve cord, known as PVT. Their expression is initiated at a precise postembryonic stage, long after PVT has been generated in mid-embryogenesis. We define spatial and temporal cues that are required for the precise regulation of zig gene expression. We find that two LIM homeobox genes, the Lhx3-class gene ceh-14 and the Lmx-class gene lim-6 are coordinately required for ziggene expression in PVT. Temporal control of zig gene expression is conferred by the heterochronic gene lin-14, a nuclear factor previously implicated in developmental timing in various contexts. Loss of thelim-6 and ceh-14 transcription factors and the developmental timer lin-14 cause not only a loss of zig gene expression but also lead to defects in the maintenance of ventral nerve cord architecture. Overriding the normal spatiotemporal control of ziggene expression through expression of one of the zig genes under control of heterologous promoters also causes axon patterning defects in the ventral nerve cord. Our findings illustrate the importance of spatial and temporal control of gene expression in the nervous system and, furthermore,implicate heterochronic genes in postmitotic neural patterning events.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3