Metabolism and water loss rate of the haematophagous insect, Rhodnius prolixus: effect of starvation and temperature

Author:

Rolandi Carmen1,Iglesias Mónica S.2,Schilman Pablo E.1ORCID

Affiliation:

1. Universidad de Buenos Aires; CONICET-UBA, Argentina;

2. Universidad de Buenos Aires, Argentina

Abstract

Abstract Haematophagous insects suffer big changes in water needs under different levels of starvation. Rhodnius prolixus is the most important haematophagous vector of Chagas disease in the north of South America and a model organism in insect physiology. Although, there are some studies on patterns of gas exchange and metabolic rates, there is little information regarding water loss in R. prolixus. We investigated if there is any modulation of water loss and metabolic rates under different requirements for saving water. We measured simultaneously CO2 production, water emission and activity on individual insects in real time by open-flow respirometry at different temperatures (15, 25 and 35°C) and post-feeding days (0, 5, 13 and 29). We found: 1) a clear drop in the metabolic rate between 5-13 days after feeding that cannot be explained by activity and 2) a decrease in water loss rate with increasing starvation level, by a decrease in cuticular water loss during the first 5 days after feeding and a drop in the respiratory component thereafter. We calculated the surface area of the insects and estimated cuticular permeability. In addition, we analyzed the pattern of gas exchange; change of cyclic to continuous pattern was affected by temperature and activity, but it was not affected by the level of starvation. Modulation of metabolic and water loss rates with temperature and starvation could help R. prolixus to be more flexible in tolerating different periods of starvation, which is adaptive in a changing environment with the uncertainty of finding a suitable host.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3