Edge detection depends on achromatic channel in Drosophila melanogaster

Author:

Zhou Yanqiong1,Ji Xiaoxiao1,Gong Haiyun1,Gong Zhefeng1,Liu Li1

Affiliation:

1. Institute of Biophysics, Chinese Academy of Sciences

Abstract

Summary Edges represent important information in object recognition, and thus edge detection is crucial for animal survival. Various types of edges result from visual contrast, such as luminance contrast and color contrast. Thus far, the molecular and neural mechanisms underlying edge detection and the relationship between different edge information-processing pathways have largely been undemonstrated. In the present study, using a color-light-emitting diode (LED)-based Buridan's paradigm, we demonstrated that a blue/green demarcation is able to generate edge-orientation behavior in the adult fly. There is a blue/green intensity ratio, the so-called point of equal-luminance (POE), at which wild-type flies did not show obvious orientation behavior towards edges. This suggests that orientation behavior towards edges is dependent on luminance contrast in Drosophila. The results of mutants ninaE17 and sevLY3;rh52;rh61 demonstrated that achromatic R1-R6 photoreceptor cells, but not chromatic R7/R8 photoreceptor cells, were necessary for orientation behavior towards edges. Moreover, ectopic expression of Rh4, Rh5 or Rh6 could efficiently restore the edge-orientation defect in the ninaE17 mutant. Altogether, our results show that R1-R6 photoreceptor cells are both necessary and sufficient for orientation behavior towards edges in Drosophila.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3