Affiliation:
1. Institute of Biophysics, Chinese Academy of Sciences
Abstract
Summary
Edges represent important information in object recognition, and thus edge detection is crucial for animal survival. Various types of edges result from visual contrast, such as luminance contrast and color contrast. Thus far, the molecular and neural mechanisms underlying edge detection and the relationship between different edge information-processing pathways have largely been undemonstrated. In the present study, using a color-light-emitting diode (LED)-based Buridan's paradigm, we demonstrated that a blue/green demarcation is able to generate edge-orientation behavior in the adult fly. There is a blue/green intensity ratio, the so-called point of equal-luminance (POE), at which wild-type flies did not show obvious orientation behavior towards edges. This suggests that orientation behavior towards edges is dependent on luminance contrast in Drosophila. The results of mutants ninaE17 and sevLY3;rh52;rh61 demonstrated that achromatic R1-R6 photoreceptor cells, but not chromatic R7/R8 photoreceptor cells, were necessary for orientation behavior towards edges. Moreover, ectopic expression of Rh4, Rh5 or Rh6 could efficiently restore the edge-orientation defect in the ninaE17 mutant. Altogether, our results show that R1-R6 photoreceptor cells are both necessary and sufficient for orientation behavior towards edges in Drosophila.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献