Mitochondrial protein Preli-like is required for development of dendritic arbors and prevents their regression in the Drosophila sensory nervous system

Author:

Tsubouchi Asako1,Tsuyama Taiichi1,Fujioka Makio2,Kohda Haruyasu2,Okamoto-Furuta Keiko2,Aigaki Toshiro3,Uemura Tadashi1

Affiliation:

1. Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku,Kyoto 606-8507, Japan.

2. Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku,Kyoto 606-8507, Japan.

3. Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi, Tokyo, 192-0397, Japan.

Abstract

Dynamic morphological changes in mitochondria depend on the balance of fusion and fission in various eukaryotes, and are crucial for mitochondrial activity. Mitochondrial dysfunction has emerged as a common theme that underlies numerous neurological disorders, including neurodegeneration. However, how this abnormal mitochondrial activity leads to neurodegenerative disorders is still largely unknown. Here, we show that the Drosophilamitochondrial protein Preli-like (Prel), a member of the conserved PRELI/MSF1 family, contributes to the integrity of mitochondrial structures, the activity of respiratory chain complex IV and the cellular ATP level. When Prel function was impaired in neurons in vivo, the cellular ATP level decreased and mitochondria became fragmented and sparsely distributed in dendrites and axons. Notably, the dendritic arbors were simplified and downsized, probably as a result of breakage of proximal dendrites and progressive retraction of terminal branches. By contrast, abrogation of the mitochondria transport machinery per se had a much less profound effect on the arbor morphogenesis. Interestingly, overexpression of Drob-1 (Debcl), a DrosophilaBax-like Bcl-2 family protein, in the wild-type background produced dendrite phenotypes that were reminiscent of the prel phenotype. Moreover,expression of the Drob-1 antagonist Buffy in prel mutant neurons substantially restored the dendritic phenotype. Our observations suggest that Prel-dependent regulation of mitochondrial activity is important for both growth and prevention of breakage of dendritic branches.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3