Cold temperature improves mobility and survival in drosophila models of Autosomal-Dominant Hereditary Spastic Paraplegia (AD-HSP)

Author:

Baxter Sally L.1,Allard Denise E.2,Crowl Christopher3,Sherwood Nina Tang3

Affiliation:

1. University of Pennsylvania, Philadelphia, PA, USA;

2. University of North Carolina, Chapel Hill, NC, USA;

3. Duke University, Durham, NC, USA

Abstract

Abstract Autosomal-Dominant Hereditary Spastic Paraplegia (AD-HSP) is a crippling neurodegenerative disease for which effective treatment or cure remains unknown. Victims experience progressive mobility loss due to degeneration of the longest axons in the spinal cord. Over half of AD-HSP cases arise from loss of function mutations in spastin, which encodes a microtubule-severing AAA ATPase. In Drosophila models of AD-HSP, larvae lacking Spastin exhibit abnormal motoneuron morphology and function, and most die as pupae. Adult survivors display impaired mobility, reminiscent of the human disease. Here, we show that rearing pupae or adults at reduced temperature (18˚C), compared to the standard temperature of 24˚C, improves the survival and mobility of adult spastin mutants but leaves wild type flies unaffected. Flies expressing human spastin with pathogenic mutations are similarly rescued. Additionally, larval cooling partially rescues the larval synaptic phenotype. Cooling thus alleviates known spastin phenotypes for each developmental stage at which it is administered, and notably, is effective even in mature adults. We find further that cold treatment rescues larval synaptic defects in mutants of Flower, a protein with no known relation to Spastin, and mobility defects in flies lacking Kat60-L1, another microtubule severing protein enriched in the CNS. Together, these data support that cold's beneficial effects extend beyond specific alleviation of Spastin dysfunction, to at least a subset of cellular and behavioral neuronal defects. Mild hypothermia, a common neuroprotective technique in clinical treatment of acute anoxia, may thus hold additional promise as a therapeutic approach for AD-HSP, and potentially, other neurodegenerative diseases.

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Reference33 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3