Genetic differences in hemoglobin function between highland and lowland deer mice

Author:

Storz Jay F.1,Runck Amy M.1,Moriyama Hideaki1,Weber Roy E.2,Fago Angela2

Affiliation:

1. School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA

2. Zoophysiology, Department of Biological Sciences, Building 1131, Aarhus University, DK-8000, Aarhus, Denmark

Abstract

SUMMARY In high-altitude vertebrates, adaptive changes in blood–O2 affinity may be mediated by modifications of hemoglobin (Hb) structure that affect intrinsic O2 affinity and/or responsiveness to allosteric effectors that modulate Hb–O2 affinity. This mode of genotypic specialization is considered typical of mammalian species that are high-altitude natives. Here we investigated genetically based differences in Hb–O2 affinity between highland and lowland populations of the deer mouse (Peromyscus maniculatus), a generalist species that has the broadest altitudinal distribution of any North American mammal. The results of a combined genetic and proteomic analysis revealed that deer mice harbor a high level of Hb isoform diversity that is attributable to allelic polymorphism at two tandemly duplicated α-globin genes and two tandemly duplicated β-globin genes. This high level of isoHb diversity translates into a correspondingly high level of interindividual variation in Hb functional properties. O2 equilibrium experiments revealed that the Hbs of highland mice exhibit slightly higher intrinsic O2 affinities and significantly lower Cl– sensitivities relative to the Hbs of lowland mice. The experiments also revealed distinct biochemical properties of deer mouse Hb related to the anion-dependent allosteric regulation of O2 affinity. In conjunction with previous findings, our results demonstrate that modifications of Hb structure that alter allosteric anion sensitivity play an important role in the adaptive fine-tuning of blood–O2 affinity.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3