Origin and mechanism of thermal insensitivity in mole hemoglobins: a test of the ‘additional’ chloride binding site hypothesis

Author:

Signore Anthony V.1,Stetefeld Jörg2,Weber Roy E.3,Campbell Kevin L.1

Affiliation:

1. Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada

2. Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

3. Zoophysiology, Department for Bioscience, University of Aarhus, DK-8000 Aarhus, Denmark

Abstract

SUMMARY The structural and evolutionary origins underlying the effect of temperature on the O2 binding properties of mammalian hemoglobins (Hbs) are poorly understood, despite their potential physiological importance. Previous work has shown that the O2 affinities of the blood of the coast mole (Scapanus orarius) and the eastern mole (Scalopus aquaticus) are significantly less sensitive to temperature changes than that of the star-nosed mole (Condylura cristata). It was suggested that this difference may arise from the binding of ‘additional’ chloride ions within a cationic pocket between residues 8His, 76Lys and 77Asn on the β-like δ-globin chains of coast and eastern mole Hbs. To test this hypothesis, we deduced the primary sequences of star-nosed mole and American shrew mole (Neurotrichus gibbsii) Hb, measured the sensitivity of these respiratory proteins to allosteric effector molecules and temperature, and calculated their overall oxygenation enthalpies (ΔH′). Here we show that the variability in ΔH′ seen among mole Hbs cannot be attributed to differential Cl– binding at δ8, δ76 and δ77, as the Cl– sensitivity of mole Hbs is unaffected by amino acid changes at this site (i.e. the proposed ‘additional’ Cl– binding site is not operational in mole Hbs). Rather, we demonstrate that the numerically low ΔH′ of coast and eastern mole Hbs results from heightened proton binding relative to other mole Hbs. Comparative sequence analysis and molecular modelling moreover suggest that this attribute evolved in a common ancestor of these two fossorial lineages and arises from the development of a salt bridge between a pair of amino acid residues (δ125His and α34Glu/Asp) that are not present in other mole Hbs.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3