Phosphoinositide 3-kinase signalling regulates early development and developmental haemopoiesis

Author:

Bone Heather K.1,Welham Melanie J.1

Affiliation:

1. Department of Pharmacy and Pharmacology and the Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, BA2 7AY, UK

Abstract

Phosphoinositide 3-kinase (PI3K)-dependent signalling regulates a wide variety of cellular functions including proliferation and differentiation. Disruption of class IA PI3K isoforms has implicated PI3K-mediated signalling in development of the early embryo and lymphohaemopoietic system. We have used embryonic stem (ES) cells as an in vitro model to study the involvement of PI3K-dependent signalling during early development and haemopoiesis. Both pharmacological inhibition and genetic manipulation of PI3K-dependent signalling demonstrate that PI3K-mediated signals, most likely via 3-phosphoinositide-dependent protein kinase 1 (PDK1), are required for proliferation of cells within developing embryoid bodies (EBs). Surprisingly, the haemopoietic potential of EB-derived cells was not blocked upon PI3K inhibition but rather enhanced, correlating with modest increases in expression of haemopoietic marker genes. By contrast, PDK1-deficient EB-derived progeny failed to generate terminally differentiated haemopoietic lineages. This deficiency appeared to be due to a requirement for PI3K signalling during the proliferative phase of blast-colony-forming cell (BL-CFC) expansion, rather than as a result of effects on differentiation per se. We also demonstrate that PI3K-dependent signalling is required for optimal generation of erythroid and myeloid progenitors and their differentiation into mature haemopoietic colony types. These data demonstrate that PI3K-dependent signals play important roles at different stages of haemopoietic development.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3