Extracellular Ca2+ sensing contributes to excess Ca2+ accumulation and vacuolar fragmentation in apmr1Δ mutant ofS. cerevisiae

Author:

Kellermayer Richard1,Aiello David P.1,Miseta Attila2,Bedwell David M.1

Affiliation:

1. Department of Microbiology, University of Alabama at Birmingham, Birmingham,AL 35294, USA

2. Department of Clinical Chemistry, University Medical School, 7624 Peçs,Hungary

Abstract

Previous studies have suggested that yeast strains lacking the Ca2+-ATPase Pmr1p are unable to maintain an adequate level of Ca2+ within the Golgi apparatus. It is thought that this compartmental store depletion induces a signal that causes an increased rate of Ca2+ uptake and accumulation in a manner similar to the capacitative Ca2+ entry (CCE) response in non-excitable mammalian cells. To explore this model further, we examined cellular Ca2+uptake and accumulation in a pmr1Δ strain grown in the presence of a reduced level of divalent cations. We found that the level of Ca2+ uptake and accumulation in a pmr1Δ strain increased as the concentration of divalent cations in the growth medium decreased. These results are inconsistent with a model in which cellular Ca2+ uptake and accumulation are determined solely by the depletion of Ca2+ in an intracellular compartment. Instead, our results suggest that a second regulatory mechanism couples cellular Ca2+uptake to the availability of Ca2+ in the extracellular environment. Furthermore, we found that various conditions that increase the level of cytosolic Ca2+ correlate with vacuolar fragmentation in wild-type (WT), pmr1Δ and pmr1Δ/pmc1Δ yeast strains. This suggests that vacuolar fragmentation might function as a normal physiological response to Ca2+ stress that increases the vacuolar surface/volume ratio,thereby maximizing the sequestration of this important signaling molecule.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3