The landing–take-off asymmetry of human running is enhanced in old age

Author:

Cavagna G. A.1,Legramandi M. A.1,Peyré-Tartaruga L. A.2

Affiliation:

1. Istituto di Fisiologia Umana, Università degli Studi di Milano, 20133 Milan, Italy

2. Exercise Research Laboratory, Federal University of Rio Grande do Sul,90690-200 Porto Alegre, Brazil

Abstract

SUMMARYThe landing–take-off asymmetry of running was thought to derive from,or at least to be consistent with, the physiological property of muscle to resist stretching (after landing) with a force greater than it can develop during shortening (before take-off). In old age, muscular force is reduced,but the deficit in force is less during stretching than during shortening. The greater loss in concentric versus eccentric strength with aging led us to hypothesize that older versus younger adults would increase the landing–take-off asymmetry in running. To test this hypothesis, we measured the within-step changes in mechanical energy of the centre of mass of the body in old and young subjects. The difference between the peaks in kinetic energy attained during the fall and during the lift of the centre of mass is greater in the old subjects. The difference between the time to lift and accelerate the centre of mass (positive work) and to absorb the same amount of energy during the downward displacement (negative work) is also greater in the old subjects. Both these findings imply a difference in force between stretching and shortening during the bounce, which is greater in the old subjects than in the young subjects. This is qualitatively consistent with the more asymmetric force–velocity relation found in aged muscle and supports, even if does not prove, the hypothesis that the landing–take-off asymmetry in running derives from the different response of muscle to stretching and shortening.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3