Effect of active shortening and stretching on the rate of force re-development in rabbit psoas muscle fibres

Author:

Ames Spencer R.1,Joumaa Venus1ORCID,Herzog Walter1

Affiliation:

1. Human Performance Laboratory, Faculty of Kinesiology, University of Calgary , Calgary, AB , Canada , T2N 1N4

Abstract

ABSTRACT The steady-state isometric force produced by skeletal muscle after active shortening and stretching is depressed and enhanced, respectively, compared with purely isometric force produced at corresponding final lengths and at the same level of activation. One hypothesis proposed to account for these force depression (FD) and force enhancement (FE) properties is a change in cross-bridge cycling kinetics. The rate of cross-bridge attachment (f) and/or cross-bridge detachment (g) may be altered following active shortening and active stretching, leading to FD and FE, respectively. Experiments elucidating cross-bridge kinetics in actively shortened and stretched muscle preparations and their corresponding purely isometric contractions have yet to be performed. The aim of this study was to investigate cross-bridge cycling kinetics of muscle fibres at steady-state following active shortening and stretching. This was done by determining muscle fibre stiffness and rate of active force redevelopment following a quick release–re-stretch protocol (kTR). Applying these measures to equations previously used in the literature for a two-state cross-bridge cycling model (attached/detached cross-bridges) allowed us to determine apparent f and g, the proportion of attached cross-bridges, and the force produced per cross-bridge. kTR, apparent f and g, the proportion of attached cross-bridges and the force produced per cross-bridge were significantly decreased following active shortening compared with corresponding purely isometric contractions, indicating a change in cross-bridge cycling kinetics. Additionally, we showed no change in cross-bridge cycling kinetics following active stretch compared with corresponding purely isometric contractions. These findings suggest that FD is associated with changes in cross-bridge kinetics, whereas FE is not.

Funder

Canadian Institutes of Health Research

Killam Foundation

Canadian Research Institutes of Health Research - Research chair Program

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference57 articles.

1. The force exerted by active striated muscle during and after change of length;Abbott;J. Physiol.,1952

2. Three-dimensional structure of the human myosin thick filament: clinical implications;AL-Khayat;Glob. Cardiol. Sci. Pract.,2013

3. Residual and passive force enhancement in skinned cardiac fibre bundles;Boldt;J. Biomech.,2020

4. Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction;Brenner;Proc. Natl. Acad. Sci. USA,1988

5. Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution;Brenner;Proc. Natl. Acad. Sci. USA,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3