Lack of prediction for high-temperature exposures enhances Drosophila place learning

Author:

Sitaraman Divya1,Zars Troy1

Affiliation:

1. Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA

Abstract

SUMMARY Animals receive rewards and punishments in different patterns. Sometimes stimuli or behaviors can become predictors of future good or bad events. Through learning, experienced animals can then avoid new but similar bad situations, or actively seek those conditions that give rise to good results. Not all good or bad events, however, can be accurately predicted. Interestingly, unpredicted exposure to presumed rewards or punishments can inhibit or enhance later learning, thus linking the two types of experiences. In Drosophila, place memories can be readily formed; indeed, memory was enhanced by exposing flies to high temperatures that are unpaired from place or behavioral contingencies. Whether it is the exposure to high temperatures per se or the lack of prediction about the exposure that is crucial for memory enhancement is unknown. Through yoking experiments, we show that the uncertainty about exposure to high temperatures positively biases later place memory. However, the unpredicted exposures to high temperature do not alter thermosensitivity. Thus, the uncertainty bias does not alter thermosensory processes. An unidentified system is proposed to buffer the high-temperature reinforcement information to influence place learning when accurate predictions can be identified.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference32 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3