Tumor xenograft modeling identifies TCF4/ITF2 loss associated with breast cancer chemoresistance

Author:

de Garibay Gorka Ruiz1,Mateo Francesca1,Stradella Agostina2,Valdés-Mas Rafael3,Palomero Luis1,Serra-Musach Jordi1,Puente Diana A.3,Díaz-Navarro Ander3,Vargas-Parra Gardenia4,Tornero Eva4,Morilla Idoia2,Farré Lourdes5,Martinez-Iniesta María5,Herranz Carmen1,McCormack Emmet6,Vidal August7,Petit Anna7,Soler Teresa7,Lázaro Conxi48,Puente Xose S.38,Villanueva Alberto59,Pujana Miguel Angel1ORCID

Affiliation:

1. Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain

2. Department of Medical Oncology, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain

3. Department of Biochemistry and Molecular Biology, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain

4. Hereditary Cancer Programme, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain

5. Chemoresistance and Predictive Factors Laboratory, ProCURE, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain

6. Departments of Clinical Science and Internal Medicine, Haematology Section, Haukeland University Hospital, and Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway

7. Department of Pathology, University Hospital of Bellvitge, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain

8. Biomedical Research Networking Centre of Cancer, CIBERONC, Spain

9. Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain

Abstract

Understanding the mechanisms of cancer therapeutic resistance is fundamental to improving cancer care. There is clear benefit from chemotherapy in different breast cancer settings; however, knowledge of the mutations and genes that mediate resistance is incomplete. In this study, by modeling chemoresistance in patient-derived xenografts (PDXs), we show that adaptation to therapy is genetically complex and identify loss of transcription factor 4 (TCF4) associated with this process. A triple-negative BRCA1-mutated PDX was used to study the genetics of chemoresistance. The PDX was treated in parallel with four chemotherapies for four iterative cycles. Exome sequencing identified few genes with de novo or enriched mutations in common among the different therapies, whereas many common depleted mutations/genes were observed. Analysis of somatic mutations from The Cancer Genome Atlas (TCGA) supported the prognostic relevance of the identified genes. A mutation in TCF4 was found de novo in all treatments, and analysis of drug sensitivity profiles across cancer cell lines supported the link to chemoresistance. Loss of TCF4 conferred chemoresistance in breast cancer cell models, possibly by altering cell cycle regulation. Targeted sequencing in chemoresistant tumors identified an intronic variant of TCF4 that may represent an expression quantitative trait locus associated with relapse outcome in TCGA. Immunohistochemical studies suggest common loss of nuclear TCF4 expression post-chemotherapy. Together, by tumor xenograft modeling, the results of this study depict a link between altered TCF4 expression and breast cancer chemoresistance.

Funder

Fundaciön Cientifica Asociaciön Española Contra el Cáncer

Agència de Gestiò dèAjuts Universitaris i de Recerca

Ministerio de Economía y Competitividad

Fundaciön Mutua Madrileña

Eusko Jaurlaritza

European Regional Development Fund

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3