Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke

Author:

Gore Aniket V.,Lampugnani Maria Grazia,Dye Louis,Dejana Elisabetta,Weinstein Brant M.

Abstract

SUMMARY Intracranial hemorrhage (ICH) is a particularly severe form of stroke whose etiology remains poorly understood, with a highly variable appearance and onset of the disease (Felbor et al., 2006; Frizzell, 2005; Lucas et al., 2003). In humans, mutations in any one of three CCM genes causes an autosomal dominant genetic ICH disorder characterized by cerebral cavernous malformations (CCM). Recent evidence highlighting multiple interactions between the three CCM gene products and other proteins regulating endothelial junctional integrity suggests that minor deficits in these other proteins could potentially predispose to, or help to initiate, CCM, and that combinations of otherwise silent genetic deficits in both the CCM and interacting proteins might explain some of the variability in penetrance and expressivity of human ICH disorders. Here, we test this idea by combined knockdown of CCM pathway genes in zebrafish. Reducing the function of rap1b, which encodes a Ras GTPase effector protein for CCM1/Krit1, disrupts endothelial junctions in vivo and in vitro, showing it is a crucial player in the CCM pathway. Importantly, a minor reduction of Rap1b in combination with similar reductions in the products of other CCM pathway genes results in a high incidence of ICH. These findings support the idea that minor polygenic deficits in the CCM pathway can strongly synergize to initiate ICH.

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3