Ccn2a/Ctgfa is an injury-induced matricellular factor that promotes cardiac regeneration in zebrafish

Author:

Mukherjee Debanjan1ORCID,Wagh Ganesh12,Mokalled Mayssa H.3ORCID,Kontarakis Zacharias4,Dickson Amy L.3,Rayrikar Amey12,Günther Stefan5,Poss Kenneth D.3,Stainier Didier Y. R.4ORCID,Patra Chinmoy1ORCID

Affiliation:

1. Department of Developmental Biology, Agharkar Research Institute, Pune, India

2. SP Pune University, Pune, India

3. Regeneration Next, Department of Cell Biology, Duke University Medical Center, Durham, USA

4. Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany

5. ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany

Abstract

The ability of zebrafish to heal their heart after injury makes them an attractive model to investigate mechanisms governing the regenerative process. In this study, we show that the gene cellular communication network factor 2a (ccn2a), previously known as ctgfa, is induced in endocardial cells in the injured tissue and regulates CM proliferation and repopulation of the damaged tissue. We find that whereas in wild-type animals, CMs track along the newly formed blood vessels that revascularize the injured tissue, in ccn2a mutants CM proliferation and repopulation are disrupted despite apparently unaffected revascularization. In addition, we find that ccn2a overexpression enhances CM proliferation and improves the resolution of transient collagen deposition. Through loss- and gain-of-function as well as pharmacological approaches, we provide evidence that Ccn2a is necessary for and promotes heart regeneration by enhancing the expression of pro-regenerative extracellular matrix genes, and by inhibiting the chemokine receptor gene cxcr3.1 through a mechanism involving Tgfβ/pSmad3 signaling. Thus, Ccn2a positively modulates the innate regenerative response of the adult zebrafish heart.

Funder

Max-Planck-Gesellschaft

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3