Promoter-enhancer looping and shadow enhancers of the mouse αA-crystallin locus

Author:

McGreal-Estrada Rebecca S.1ORCID,Wolf Louise V.12ORCID,Cvekl Ales1ORCID

Affiliation:

1. Albert Einstein College of Medicine, 1300 Morris Park Ave, Ullmann 123, Bronx, NY 10461, USA

2. Office of Research Services (ORS), Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place – Box 1120, New York, NY 10029-6574, USA

Abstract

Gene regulation by enhancers is important for precise temporal and spatial gene expression. Enhancers can drive gene expression regardless of their location, orientation, or distance from the promoter. Changes in chromatin conformation and chromatin looping occur to bring the promoter and enhancers into close proximity. αA-crystallin ranks among one of the most abundantly expressed genes and proteins in the mammalian lens. The αA-crystallin locus is characterized by a 16 kb chromatin domain marked by two distal enhancers, 5’ DCR1 and 3’ DCR3. Here we used chromatin conformation capture (3C) analysis and transgenic approaches to analyze temporal control of the mouse αA-crystallin gene. We find that DCR1 is necessary, but not sufficient alone to drive expression at E10.5 in the mouse lens pit. Chromatin looping revealed interaction between the promoter and the region 3’ to DCR1, identifying a novel enhancer region in the αA-crystallin locus. We determined that this novel enhancer region, DCR1S, recapitulates the temporal control by DCR1. Acting as shadow enhancers, DCR1 and DCR1S are able to control expression in the lens vesicle at E11.5. It remains to be elucidated however, which region of the αA-crystallin locus is responsible for expression in the lens pit at E10.5.

Funder

National Institutes of Health

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3