Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process

Author:

Grieshaber Scott S.1,Grieshaber Nicole A.1,Hackstadt Ted1

Affiliation:

1. Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA

Abstract

Chlamydiae are pathogenic obligate intracellular bacteria with a biphasic developmental cycle that involves cell types adapted for extracellular survival (elementary bodies, EBs) and intracellular multiplication (reticulate bodies, RBs). The intracellular development of chlamydiae occurs entirely within a membrane-bound vacuole termed an inclusion. Within 2 hours after entry into host cells, Chlamydia trachomatis EBs are trafficked to the perinuclear region of the host cell and remain in close proximity to the Golgi apparatus, where they begin to fuse with a subset of host vesicles containing sphingomyelin. Here, we provide evidence that chlamydial migration from the cell periphery to the peri-Golgi region resembles host cell vesicular trafficking. Chlamydiae move towards the minus end of microtubules and aggregate at the microtubule-organizing center (MTOC). In mammalian cells the most important minus-end-directed microtubule motor is cytoplasmic dynein. Microinjection of antibodies to a subunit of cytoplasmic dynein inhibited movement of chlamydiae to the MTOC, whereas microinjection of antibodies to the plus-directed microtubule motor, kinesin, had no effect. Surprisingly, overexpression of the protein p50 dynamitin, a subunit of the dynactin complex that links vesicular cargo to the dynein motor in minus directed vesicle trafficking, did not abrogate chlamydial migration even though host vesicle transport was inhibited. Nascent chlamydial inclusions did, however, colocalize with the p150(Glued) dynactin subunit, which suggests that p150(Glued) may be required for dynein activation or processivity but that the cargo-binding activity of dynactin, supplied by p50 dynamitin subunits and possibly other subunits, is not. Because chlamydial transcription and translation were required for this intracellular trafficking, chlamydial proteins modifying the cytoplasmic face of the inclusion membrane are probable candidates for proteins fulfilling this function.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3