Author:
Amoasii Leonela,Hnia Karim,Chicanne Gaëtan,Brech Andreas,Cowling Belinda S.,Müller Martin Michael,Schwab Yannick,Koebel Pascale,Ferry Arnaud,Payrastre Bernard,Laporte Jocelyn
Abstract
The sarcoplasmic reticulum (SR) is a specialized form of endoplasmic reticulum (ER) in skeletal muscle and is essential for calcium homeostasis. The mechanisms involved in SR remodeling and maintenance of SR subdomains are elusive. In this study, we identified myotubularin (MTM1), a phosphoinositide phosphatase mutated in X-linked centronuclear myopathy (XLCNM, or myotubular myopathy), as a key regulator of phosphatidylinositol 3-monophosphate (PtdIns3P) levels at the SR. MTM1 is predominantly located at the SR cisternae of the muscle triads and Mtm1 deficient mouse muscles and myoblasts from XLCNM patients exhibit abnormal SR/ER networks. In vivo modulation of MTM1 enzymatic activity in skeletal muscle using ectopic expression of wild-type or a dead-phosphatase MTM1 protein leads to differential SR remodeling. Active MTM1 is associated to flat membrane stacks, while dead-phosphatase MTM1 mutant promotes highly curved cubic membranes originating from the SR and enriched in PtdIns3P. Over-expression of a tandem FYVE domain with high affinity for PtdIns3P alters the shape of the SR cisternae at the triad. Our findings, supported by the parallel analysis of the Mtm1-null mouse and in vivo study, reveal a direct function of MTM1 enzymatic activity in SR remodeling and a key role for PtdIns3P in promoting SR membrane curvature in skeletal muscle. We propose that alteration in SR remodeling is a primary cause of X-linked centronuclear myopathy. The tight regulation of PtdIns3P on specific membrane subdomains may be a general mechanism to control membrane curvature.
Publisher
The Company of Biologists
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献