Redundancy and cooperation in Notch intercellular signaling

Author:

Luna-Escalante Juan C.1,Formosa-Jordan Pau1,Ibañes Marta12

Affiliation:

1. Departament de Física de la Matèria Condensada, Universitat de Barcelona, Spain

2. Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Spain

Abstract

During metazoan development, Notch signaling drives spatially coordinated differentiation by establishing communication between adjacent cells. This occurs through either lateral inhibition, in which adjacent cells acquire distinct fates, or lateral induction, in which all cells become equivalent. Notch signaling is commonly activated by several distinct ligands, each of which drives signaling with a different efficiency upon binding to the Notch receptor of adjacent cells. Moreover, these ligands can also be distinctly regulated by Notch signaling. Under such complex circumstances, the overall spatial coordination becomes elusive. Here, we address this issue through both mathematical and computational analyses. Our results show that when two ligands have distinct efficiencies and compete for the same Notch receptor, they cooperate to drive new signaling states, thereby conferring additional robustness and evolvability to Notch signaling. Counterintuitively, while antagonistically regulated ligands cooperate to drive and enhance the response that is expected from the more efficient ligand, equivalently regulated ligands coordinate emergent spatial responses that are dependent on both ligands. Our study highlights the importance of ligand efficiency in multi-ligand scenarios, and can explain previously reported complex phenotypes.

Funder

Ministerio de Economía y Competitividad (Spain) and FEDER

Ministerio de Economía y Competitividad

Generalitat de Catalunya

Ministerio de Educacion

Herchel Smith Foundation

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3