Dual role of delta-like 1 homolog (DLK1) in skeletal muscle development and adult muscle regeneration

Author:

Andersen Ditte Caroline12,Laborda Jorge3,Baladron Victoriano3,Kassem Moustapha45,Sheikh Søren Paludan16,Jensen Charlotte Harken1

Affiliation:

1. Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Winsloewparken 21 3rd, 5000 Odense C, Denmark.

2. Insitute of Clinical Research, University of Southern Denmark, Odense, Denmark.

3. Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla-La Mancha, Avenida de Almansa 14, 02006 Albacete, Spain.

4. Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark.

5. Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia.

6. Department of Cardiovascular and Renal Research, Insitute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.

Abstract

Muscle development and regeneration is tightly orchestrated by a specific set of myogenic transcription factors. However, factors that regulate these essential myogenic inducers remain poorly described. Here, we show that delta-like 1 homolog (Dlk1), an imprinted gene best known for its ability to inhibit adipogenesis, is a crucial regulator of the myogenic program in skeletal muscle. Dlk1-/- mice were developmentally retarded in their muscle mass and function owing to inhibition of the myogenic program during embryogenesis. Surprisingly however, Dlk1 depletion improves in vitro and in vivo adult skeletal muscle regeneration by substantial enhancement of the myogenic program and muscle function, possibly by means of an increased number of available myogenic precursor cells. By contrast, Dlk1 fails to alter the adipogenic commitment of muscle-derived progenitors in vitro, as well as intramuscular fat deposition during in vivo regeneration. Collectively, our results suggest a novel and surprising dual biological function of DLK1 as an enhancer of muscle development, but as an inhibitor of adult muscle regeneration.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3