A three-dimensional spheroid-specific role for Wnt–β-catenin and Eph–ephrin signaling in nasopharyngeal carcinoma cells

Author:

Yi Canhui1,Lai Sook Ling1,Tsang Chi Man2,Artemenko Margarita1,Shuen Tang Maggie Kei13,Pang Stella W.45,Lo Kwok Wai2,Tsao Sai Wah6,Wong Alice Sze Tsai1ORCID

Affiliation:

1. School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong

2. Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, Chinese University of Hong Kong, Shatin, Hong Kong

3. Laboratory for Synthetic Chemistry and Chemical Biology Limited, 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong

4. Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong

5. Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong

6. School of Biomedical Sciences, University of Hong Kong, Sassoon Road, Hong Kong

Abstract

ABSTRACT One of the greatest unmet needs hindering the successful treatment of nasopharyngeal carcinomas (NPCs) is for representative physiological and cost-effective models. Although Epstein–Barr virus (EBV) infection is consistently present in NPCs, most studies have focused on EBV-negative NPCs. For the first time, we established and analyzed three-dimensional (3D) spheroid models of EBV-positive and EBV-negative NPC cells and compared these to classical two-dimensional (2D) cultures in various aspects of tumor phenotype and drug responses. Compared to 2D monolayers, the 3D spheroids showed significant increases in migration capacity, stemness characteristics, hypoxia and drug resistance. Co-culture with endothelial cells, which mimics essential interactions in the tumor microenvironment, effectively enhanced spheroid dissemination. Furthermore, RNA sequencing revealed significant changes at the transcriptional level in 3D spheroids compared to expression in 2D monolayers. In particular, we identified known (VEGF, AKT and mTOR) and novel (Wnt–β-catenin and Eph–ephrin) cell signaling pathways that are activated in NPC spheroids. Targeting these pathways in 3D spheroids using FDA-approved drugs was effective in monoculture and co-culture. These findings provide the first demonstration of the establishment of EBV-positive and EBV-negative NPC 3D spheroids with features that resemble advanced and metastatic NPCs. Furthermore, we show that NPC spheroids have potential use in identifying new drug targets.

Funder

Research Grants Council, University Grants Committee, Hong Kong

Innovation and Technology Commission

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3