Effects of Hd2 in the presence of the photoperiod-insensitive functional allele of Hd1 in rice

Author:

Zhang Zhen-Hua1,Cao Li-Yong1,Chen Jun-Yu1,Zhang Ying-Xin1,Zhuang Jie-Yun1ORCID,Cheng Shi-Hua1

Affiliation:

1. State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China

Abstract

ABSTRACT The role of photoperiod sensitivity (PS) of flowering genes have become well recognized in rice, whereas little attention has been drawn to the non-PS component of these genes, especially to their influence on gene-by-gene interactions. Rice populations in which the photoperiod-sensitive allele at Hd1 has become insensitive to photoperiod but continued to affect heading date (HD) were used in this study to fine-map a quantitative trait locus (QTL) for HD and analyze its genetic relationship to Hd1. The QTL was delimitated to a 96.3-kb region on the distal end of the long arm of chromosome 7. Sequence comparison revealed that this QTL is identical to Hd2. In the near-isogenic line (NIL) populations analyzed, Hd1 and Hd2 were shown to be photoperiod insensitive and have pleiotropic effects for HD, plant height and yield traits. The two genes were found to largely act additively in regulating HD and yield traits. The results indicate that non-PS components of flowering genes involved in photoperiod response play an important role in controlling flowering time and grain yield in rice, which should allow breeders to better manipulate pleiotropic genes for balancing adaptability and high-yielding accumulation.

Funder

National Natural Science Foundation of China

Ministry of Agriculture of the People's Republic of China

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3