The utility and determination of Pcrit in fishes

Author:

Ultsch Gordon R.1ORCID,Regan Matthew D.2ORCID

Affiliation:

1. Department of Biology, University of Florida, Gainesville, FL 32611, USA

2. Department of Comparative Biosciences, University of Wisconsin–Madison, Madison, WI 53706, USA

Abstract

ABSTRACT The critical O2 tension (Pcrit) is the lowest PO2 at which an animal can maintain some benchmark rate of O2 uptake (ṀO2). This PO2 has long served as a comparator of hypoxia tolerance in fishes and aquatic invertebrates, but its usefulness in this role, particularly when applied to fishes, has recently been questioned. We believe that Pcrit remains a useful comparator of hypoxia tolerance provided it is determined using the proper methods and hypoxia tolerance is clearly defined. Here, we review the available methods for each of the three steps of Pcrit determination: (1) measuring the most appropriate benchmark ṀO2 state for Pcrit determination (ṀO2,std, the ṀO2 required to support standard metabolic rate); (2) reducing water PO2; and (3) calculating Pcrit from the ṀO2 versus PO2 curve. We make suggestions on best practices for each step and for how to report Pcrit results to maximize their comparative value. We also discuss the concept of hypoxia tolerance and how Pcrit relates to a fish's overall hypoxia tolerance. When appropriate methods are used, Pcrit provides useful comparative physiological and ecological information about the aerobic contributions to a fish's hypoxic survival. When paired with other hypoxia-related physiological measurements (e.g. lactate accumulation, calorimetry-based measurements of metabolic depression, loss-of-equilibrium experiments), Pcrit contributes to a comprehensive understanding of how a fish combines aerobic metabolism, anaerobic metabolism and metabolic depression in an overall strategy for hypoxia tolerance.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3