Affiliation:
1. Department of Biology, University of Florida, Gainesville, FL 32611, USA
2. Department of Comparative Biosciences, University of Wisconsin–Madison, Madison, WI 53706, USA
Abstract
ABSTRACT
The critical O2 tension (Pcrit) is the lowest PO2 at which an animal can maintain some benchmark rate of O2 uptake (ṀO2). This PO2 has long served as a comparator of hypoxia tolerance in fishes and aquatic invertebrates, but its usefulness in this role, particularly when applied to fishes, has recently been questioned. We believe that Pcrit remains a useful comparator of hypoxia tolerance provided it is determined using the proper methods and hypoxia tolerance is clearly defined. Here, we review the available methods for each of the three steps of Pcrit determination: (1) measuring the most appropriate benchmark ṀO2 state for Pcrit determination (ṀO2,std, the ṀO2 required to support standard metabolic rate); (2) reducing water PO2; and (3) calculating Pcrit from the ṀO2 versus PO2 curve. We make suggestions on best practices for each step and for how to report Pcrit results to maximize their comparative value. We also discuss the concept of hypoxia tolerance and how Pcrit relates to a fish's overall hypoxia tolerance. When appropriate methods are used, Pcrit provides useful comparative physiological and ecological information about the aerobic contributions to a fish's hypoxic survival. When paired with other hypoxia-related physiological measurements (e.g. lactate accumulation, calorimetry-based measurements of metabolic depression, loss-of-equilibrium experiments), Pcrit contributes to a comprehensive understanding of how a fish combines aerobic metabolism, anaerobic metabolism and metabolic depression in an overall strategy for hypoxia tolerance.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献