Unconventional mechanisms control cyclic respiratory gas release in flyingDrosophila

Author:

Lehmann Fritz-Olaf1,Heymann Nicole1

Affiliation:

1. Department of Neurobiology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany

Abstract

SUMMARYThe high power output of flight muscles places special demands on the respiratory gas exchange system in insects. In small insects, respiration relies on diffusion, and for elevated locomotor performance such as flight,instantaneous gas exchange rates typically co-vary with the animal's metabolic activity. By contrast, under certain conditions, instantaneous release rate of carbon dioxide from the fruit fly Drosophila flying in a virtual-reality flight arena may oscillate distinctly at low frequency(0.37±0.055 Hz), even though flight muscle mechanical power output requires constant metabolic activity. Cross-correlation analysis suggests that this uncoupling between respiratory and metabolic rate is not driven by conventional types of convective flow reinforcement such as abdominal pumping,but might result from two unusual mechanisms for tracheal breathing. Simplified analytical modeling of diffusive tracheal gas exchange suggests that cyclic release patterns in the insect occur as a consequence of the stochastically synchronized control of spiracle opening area by the four large thoracic spiracles. Alternatively, in-flight motion analysis of the abdomen and proboscis using infra-red video imaging suggests utilization of the proboscis extension reflex (PER) for tracheal convection. Although the respiratory benefit of synchronized spiracle opening activity in the fruit fly is unclear, proboscis-induced tracheal convection might potentially help to balance the local oxygen supply between different body compartments of the flying animal.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference49 articles.

1. Bartholomew, G. A., Lighton, J. R. B. and Louw, G. N.(1985). Energetics of locomotion and patterns of respiration in tenebrionid beetles from the Namib Desert. J. Comp. Physiol. B155,155-162.

2. Berrigan, J. and Lighton, J. R. B. (1994). Energetics of pedestrian locomotion in adult male blowflies, Protophormia terraenovae (diptera: Calliphoridae). Physiol. Zool.67,1140-1153.

3. Casey, T. M. (1980). Flight energetics and heat exchange of gypsy moths in relation to air temperature. J. Exp. Biol.88,133-145.

4. Casey, T. M. (1989). Oxygen consumption during flight. In Insect Flight (ed. G. J. Goldsworthy and C. H. Wheeler), pp. 257-272. Boca Raton, FL: CRC Press.

5. Casey, T. M. and Ellington, C. P. (1989). Energetics of insect flight. In Energy Transformations in Cells and Organisms (ed. W. Wieser and E. Gnaiger), pp.200-210. Stuttgart: Thieme Verlag.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3