A member of the Fizzy-related family of APC activators is regulated by cAMP and is required at different stages of plant infection byUstilago maydis

Author:

Castillo-Lluva Sonia1,García-Muse Tatiana1,Pérez-Martín José1

Affiliation:

1. Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco-UAM, 28049 Madrid, Spain

Abstract

Here, we identified a new member of the Fizzy-related family of APC activators, Cru1, which is required for virulence in the corn smut fungus Ustilago maydis. We show that Cru1 promotes the degradation of B-type cyclins in U. maydis. Cells deficient in the Cru1 protein show defects in cell size, adaptation to nutritional conditions and cell separation. We propose that the phenotypes observed are a consequence of the inability of cru1Δ cells to keep under control the levels of mitotic cyclins during G1. The levels of cru1 mRNA are controlled by nutritional conditions and cAMP levels, implicating the cAMP/protein kinase A pathway in the transmission of environmental conditions to the cell cycle. Cells deficient in Cru1 function are severely impaired in their ability to infect corn plants. This low rate of plant infection is caused by several defects. First, a low level of expression of the pheromone-encoding gene, mfa1, resulted in a low frequency of dikaryotic infective filament formation. Second, proliferation of fungal cells inside the plant is also affected, resulting in the inability to induce tumors in plants. Finally, the formation and germination of teliospores is also impaired. Our results support the hypothesis that virulence and cell cycle are connected in U. maydis. We propose that along the infection process, Cru1 is required to keep the appropriate G1 length necessary for the adaptation of fungal cells to host environment through the different stages of the plant infection.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3