A dynamic expression survey identifies transcription factors relevant in mouse digestive tract development

Author:

Choi Michael Y.123,Romer Anthony I.1,Hu Michael1,Lepourcelet Maina13,Mechoor Ambili13,Yesilaltay Ayce4,Krieger Monty4,Gray Paul A.15,Shivdasani Ramesh A.136

Affiliation:

1. Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.

2. Massachusetts General Hospital, Department of Medicine, 55 Fruit Street,Boston, MA 02114, USA.

3. Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.

4. Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

5. Department of Neuroscience, Harvard Medical School, 25 Shattuck Street,Boston, MA 02115, USA.

6. Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.

Abstract

Tissue-restricted transcription factors (TFs), which confer specialized cellular properties, are usually identified through sequence homology or cis-element analysis of lineage-specific genes; conventional modes of mRNA profiling often fail to report non-abundant TF transcripts. We evaluated the dynamic expression during mouse gut organogenesis of 1381 transcripts,covering nearly every known and predicted TF, and documented the expression of approximately 1000 TF genes in gastrointestinal development. Despite distinctive structures and functions, the stomach and intestine exhibit limited differences in TF genes. Among differentially expressed transcripts, a few are virtually restricted to the digestive tract, including Nr2e3,previously regarded as a photoreceptor-specific product. TFs that are enriched in digestive organs commonly serve essential tissue-specific functions, hence justifying a search for other tissue-restricted TFs. Computational data mining and experimental investigation focused interest on a novel homeobox TF, Isx,which appears selectively in gut epithelium and mirrors expression of the intestinal TF Cdx2. Isx-deficient mice carry a specific defect in intestinal gene expression: dysregulation of the high density lipoprotein (HDL) receptor and cholesterol transporter scavenger receptor class B, type I (Scarb1). Thus,integration of developmental gene expression with biological assessment, as described here for TFs, represents a powerful tool to investigate control of tissue differentiation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3